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Preface

Purpose of This Book

This book is part of the Information Systems Security & Assurance Series from Jones  
& Bartlett Learning (www.jblearning.com). Designed for courses and curriculums in  
IT Security, Cybersecurity, Information Assurance, and Information Systems Security, this 
series features a comprehensive, consistent treatment of the most current thinking and 
trends in this critical subject area. These titles deliver fundamental information-security 
principles packed with real-world applications and examples. Authored by professionals 
experienced in information systems security, they deliver comprehensive information on 
all aspects of information security. Reviewed word for word by leading technical experts 
in the field, these books are not just current, but forward-thinking—putting you in the 
position to solve the cybersecurity challenges not just of today, but of tomorrow as well. 

Security Strategies in Linux Platforms and Applications, Second Edition, covers every 
major aspect of security on a Linux system. The first part of this book describes the risks, 
threats, and vulnerabilities associated with Linux as an operating system. Linux is one of 
the predominant operating systems used for public-facing servers on the Internet. As a 
result, a big focus for this book is on implementing strategies that you can use to protect 
your system implementations, even in cases where they are public facing. To that end, 
this book uses examples from two of the major distributions built for the server, Red Hat 
Enterprise Linux and Ubuntu (Server Edition).

With Linux, security is much more than just firewalls and permissions. Part 2 of  
the book shows you how to take advantage of the layers of security available to Linux—
user and group options, filesystems, and security options for important services, as well as 
the security modules associated with AppArmor and SELinux. It also covers encryption 
options where available. 

The final part of this book explores the use of both open source and proprietary tools when 
building a layered security strategy for your Linux operating system environments. With these 
tools, you can define a system baseline, audit the system state, monitor system performance, 
test network vulnerabilities, detect security breaches, and more. You will also learn basic 
practices associated with security alerts and updates, which are just as important.

As with any operating system, a Linux implementation requires strategies to harden  
it against attack. Linux is based on another operating system with a very long history, 
and it inherits the lessons learned over that history as well as some of the challenges. With 
Linux, you get a lot of eyes looking at the programs, which many consider to be a benefit 
of using open source programs and operating systems. While there are advantages, 
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however, there are risks associated as well. Fortunately, a large community is built 
around improving Linux and the various software packages that go into it. This includes 
the National Security Agency (NSA), which initially developed a set of security exten-
sions that has since been implemented into the Linux kernel itself.

When you are finished with this book, you will understand the importance of custom 
firewalls, restrictions on key services, golden baseline systems, and custom local reposi-
tories. You will even understand how to customize and recompile the Linux kernel. 
You will be able to use open source and commercial tools to test the integrity of various 
systems on the network. The data you get from such tools will identify weaknesses and 
help you create more secure systems.

Learning Features

The writing style of this book is practical and conversational. Each chapter begins with  
a statement of learning objectives. Step-by-step examples of information security concepts 
and procedures are presented throughout the text. Illustrations are used both to clarify 
the material and to vary the presentation. The text is sprinkled with notes, tips, FYIs, 
warnings, and sidebars to alert the reader to additional helpful information related to the 
subject under discussion. Chapter assessments appear at the end of each chapter, with 
solutions provided in the back of the book. 

Throughout this book are references to commands and directives. They may be 
included in the body of a paragraph in a monospaced font, like this: apt-get update. 
Other commands or directives may be indented between paragraphs, like the directive 
shown here:

deb http://us.archive.ubuntu.com/ubuntu/ lucid main restricted

When a command is indented between paragraphs, it’s meant to include a Linux 
command line prompt. You will note two different prompts in the book. The first prompt  
is represented with a $. As shown here, it represents the command-line prompt from  
a regular user account:

$ ls -ltr > list_of_files

The second prompt is represented by a #. As shown here, it represents the command-line 
prompt from a root administrative account:

# /usr/sbin/apachectl restart 

Sometimes, the command or directive is so long, it has to be broken into multiple lines due 
to the formatting requirements of this book. Line wraps are indicated by a curved arrow, 
as is shown at the start of what looks like the second line of the iptables command.  
It is just a continuation arrow, which would be typed as a continuous command on the 
command line or an appropriate configuration file.

iptables -A RH-Firewall-1-INPUT -i eth0 -s 10.0.0.0/8 

-j LOG --log-prefix “Dropped private class A addresses”.



Preface xxi

Chapter summaries are included in the text to provide a rapid review of the material and 
to help students understand the relative importance of the concepts presented. 

Audience

The material is suitable for undergraduate or graduate computer science majors or  
information science majors, students at a two-year technical college or community college 
who have a basic technical background, or readers who have a basic understanding  
of IT security and want to expand their knowledge. It assumes basic knowledge of Linux 
administration at the command-line interface.
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ONE OF THE MOST SIGNIFICANT ATTACKS in the more than 40-year history of 
the Internet happened in the late 1980s. The overall numbers may not have 
been impressive, but when you look at it from a percentage perspective, 

it may have been the most devastating attack ever. In November of 1988, Robert 
T. Morris released a worm from a system located at the Massachusetts Institute 
of Technology (MIT), although he was at Cornell. The worm is estimated to have 
attacked 10 percent of the systems that were then connected to the Internet. The 
impact of the attack continued over several days while various networks that were 
attached to the NSFNet backbone were disconnected to get systems restored and 
patched. (The NSFNet was created by the National Science Foundation in the 1980s 
to pull together all the disparate specialized and regional networks. Initially, the 
links to the NSFNet were 56Kbps. The NSFNet took over where the ARPANET left  
off and became the launch point for what we now call the Internet.)

In addition to increasing the awareness of system vulnerabilities, the worm led to 
the creation of a Computer Emergency Response Team (CERT) at Carnegie Mellon. 
There were other actions taken to help coordinate activities in the case of another 
network-wide attack. Less than 15 years later, these coordination efforts were 
necessary when the first documented and large-scale distributed denial of service 
(DDoS) attack took place in February of 2000. A young man from Montreal, who 
called himself Mafiaboy, launched attacks against a number of prominent Web sites 
using the Stacheldraht tool in control of a botnet.

The significance of these two events is that both targeted system weaknesses 
on Unix-like operating systems. The worm attacked several Unix services that 
could easily be exploited by remote users. Some of these services were weak and 
unsecure to begin with, while others were simply a result of exploitable bugs in the 
software. The DDoS attacks were a result, in part, of the way the networking stacks 
within these operating systems were written. They were vulnerable to particular 
types of attacks that rendered the systems incapable of taking in more network 
requests. While some of this was because of the way the network protocols were 
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Chapter 1 Topics

This chapter covers the following topics and concepts:

•	 What the origins of Linux are

•	 How security works in the open source world

•	 What distributions of Linux exist

•	 What the C-I-A triad is

•	 How Linux operates as a security device

•	 What Linux’s place in the enterprise is

•	 What some examples of recent security issues are

Chapter 1 Goals

When you complete this chapter, you will be able to:

•	 Describe the basics of security in an open source world

•	 Explain various roles of Linux systems in the IT architecture

•	 Differentiate between Linux and the operating environment that runs  
on top of Linux

•	 Explain threats that can target Linux

designed, some was also a result of the implementation of these protocols within 
the operating system itself.

According to W3 Techs Web technology surveys, servers based on the Unix 
operating system make up two-thirds of the systems on the Internet. So the better 
we can understand how to provide security to these servers, the less vulnerable 
to attack they will be. Of course, the reality is that no operating system is secure. 
Security isn’t a state. Security results from appropriate controls and processes, and 
can’t be measured at a point in time. Understanding the appropriate technical 
means that need to be implemented is part of the process, but the state of a 
system constantly changes. This is due in no small part to influences from the 
outside. Among these is the so-called “research” constantly performed both by 
those who hope to improve the resilience of the system against attack and by  
those who wish to weaken that resilience. 

Because the topic under consideration here is Linux, how does Unix factor into 
the equation? As it turns out, one must go back several decades to explain it.
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The Origins of Linux

The Linux operating system is part of a very long and complicated family tree that began 
in the 1960s. In 1964, MIT joined with General Electric and Bell Labs to create a multi-
user, time-sharing operating system. At the time, computers cost hundreds of thousands 
if not millions of dollars and were generally used only by a single user or process at a 
time. The goal of this project was to create an operating system that would allow multiple 
processes to run, seemingly simultaneously. The operating system was named Multics, 
short for Multiplexed Information and Computing Service, and its design reflected the 
concern about protecting one user from another user. 

Two members of the Multics team from Bell Labs, Ken Thompson and Dennis Ritchie, 
became concerned that the system was becoming overly complex because of the design 
goals. In 1969, Bell Labs pulled out of the five-year-old project. When that happened, 
Thompson and Ritchie decided to develop their own operating system with goals almost 
entirely opposite to those of Multics. Thompson and Ritchie called their operating system 
Unics as a play on the name Multics. The “Uni” in Unics stood for uniplexed, suggesting 
that the goal was to create a small, workable operating system that didn’t have multiuser 
functionality as one of its aims. Where Thompson and Ritchie felt Multics was over-
designed, they worked to create a system that was easier to use but still employed the 
hierarchical file system and the shell that were created for Multics. In general, though, 
where Multics favored large, complex user commands, Unics was developed with a lot 
of very small, single-purpose commands that could be chained together to create more 
complex functionality.

Fast forward 20 years or so and the name Unics had been changed to Unix, AT&T 
had been broken apart, and there were several versions of Unix available from AT&T, 
University of California at Berkeley, Microsoft, and others. By the mid-1980s, one of the 
advantages of Unix was that the source code was readily available and the design was 
simple enough that it made a good source of study for computer science students. 

In 1987, a computer science professor and textbook author named Andrew Tanenbaum 
released a Unix-like operating system called MINIX in an appendix to an operating system 
textbook. The operating system was also available on a set of floppy disks. Where Unix  

Linux is only the operating system, also called the kernel. This is what interfaces with the hardware 
to manage memory and file systems and make sure programs are run. Sun Microsystems used 
to make a distinction between its operating system, which it called SunOS, and the operating 
environment, which was Solaris. The operating environment is all of the programs and the user 
interface that communicates with the user and the kernel.
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was primarily a large system operating system, MINIX was targeted at IBM PC-compatible 
systems. Not surprisingly, a large number of students began using the source code and 
talking about it on USENET. One of those students was Linus Torvalds, who began adding 
features and modifying what was in MINIX. Torvalds went on to release his version of the 
operating system, which he called Linux. Linux was first released on October 5, 1991.

Since its release, a number of open source projects have contributed to Linux. One of 
the most significant over the last 20 years has been GNU’s Not Unix (GNU), which was an 
attempt to create a Unix-like operating system.

Linux itself is a very fractured collective of different distributions. A distribution is a 
collection of a kernel, userland, graphical interface, and package-management system. 
The package-management system is used to install software. Package management is 
developed by the maintainers of the distribution, and there are many package-management 
systems available. RedHat (Fedora, RedHat Enterprise Linux, CentOS) uses RedHat 
Package Manager (RPM), though it also supports the Yellowdog Updater, Modified (Yum) 
that will check dependencies and download and install requested packages. Debian-
based systems like Mint and Ubuntu use the Advanced Package Tool (APT) and the 
related utilities.

Security in an Open Source World

Linux is part of a large collection of software developed by teams that provide access to 
the source code and all the programming language text from which the final executable 
is generated for anyone who wants to look at it. This approach is called open source 
because the source code is open for anyone to see. Software developed by companies 
that ask you to pay for the program is commonly called closed source in addition to being 
commercial software. 

Because the GNU project developed the common Unix utilities that users would employ if  
they were using a command-line shell, not to mention the compiler that is commonly used to 
build the Linux kernel, many GNU proponents prefer that the entire package be referred to as  
GNU/Linux. This has been the source of a number of long and heated debates over the years. 
In fact, it is sometimes referred to as a religious war because neither side is likely to convert 
the other side to their way of thinking. While it may be slightly inaccurate, the term Linux is 
generally used to describe the entire operating environment. Otherwise, you may have to start 
referring to a complete system as KDE/Apache/GNU/Linux or something equally unwieldy just  
to make sure all the different groups get appropriate billing.
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The idea behind open source goes back many decades to a  
time when programmers just wrote programs for the fun of it, 
leaving the source around for someone else to look at and improve. 
You didn’t pay for software. The system software came with the 
machine you bought and the computer companies made their  
money on hardware.

The thing about programming is that everyone has a different 
style. Some people are far better at writing efficient code, while  
others are better at writing code that performs a lot of checks, 
making the resulting program more resistant to attack. Because  
of this, having access to source code means a couple of things:

•	 You can learn from the source code. You can see clearly what it does. You can  
have a better understanding of how the program operates. 

•	 If you are so inclined, you can make fixes to the source in case there are bugs.

One of the leading proponents of open source software is Richard Stallman, who created 
the GNU project while he was at MIT. Stallman believed all source code should be available. 
This should not be read as a belief that everything should be without cost. There is a 
concept of gratis versus libre, commonly rendered in the open source community as  
“free as in free speech, not free as in free beer.” Gratis means without cost, as in free beer. 
Libre means without restriction, as in free speech. Stallman has long said that he believes 
that if he finds something that isn’t working right with a piece of software, he should be 
able to go into the source code and fix it. Without access to the source, he doesn’t have 
that freedom, which he believes is essential.

What sorts of security issues are there with open source? First, just because the source 
code is open doesn’t mean the project has processes in place to ensure code is written 
securely. It also doesn’t mean there has been rigorous testing. If the only testing that has 
been done is by the developer, then there hasn’t been sufficient testing done on the source 
code. Developers have a different focus when they are testing code they have written 
than someone who is intent on doing complete security testing or even just regression 

NOTE

In a university setting, 
having access to source code 
enabled you to learn from 
what others were doing. If 
someone else had a better 
idea and improved what was 
there, then everyone could 
learn and benefit from it. 

There are a number of well-known aphorisms that suggest that the more bugs you find,  
the more bugs there are. Proponents of open source suggest that making sure everyone has 
access to the code will lead to fewer bugs. More eyeballs means there are more people who 
can find issues and fix them. Open source detractors may counter that by saying not all open 
source developers are highly skilled and trained. This can lead to more bugs because the best 
programmers may not always contribute to well-used software projects.
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testing. Larger projects have the advantage of ensuring that 
people who are competent at testing perform full testing before 
releases are issued. Smaller projects don’t have the luxury of 
dedicating a lot of people to testing, which can potentially put 
them at risk.

Open source projects put their source code out on the 
open Internet at public repositories. Along with the source 
code, there is generally a cryptographic hash generated to 
demonstrate that what you downloaded is what you are 
actually looking for. Where you are protected with this is if the 
download gets corrupted. It doesn’t protect you if the tarball 
has been altered unless the person doing the altering is really 
dumb. If the tarball gets modified, an attacker is going to 
generate a new MD5 and replace the existing one so everything 
looks correct. If an attacker can get access to the repository,  
he or she can upload modified source code that may include  
a back door or some other malicious modification. 

Commercial software may suffer from the problem of lengthy processes that can get 
in the way of the speedy resolution of problems. A vulnerability must be logged, investi-
gated, and then perhaps brought before a program or project manager for prioritization 
before the issue can be resolved. Once it’s been resolved, the fix likely has to wait for the 
next build schedule, at which point the entire build must be regression tested and unit 
tested to make sure all the issues have been resolved. A company like Microsoft batches 
all of its updates (unless they are considered critical) and releases them all at one time. An 
advantage to an open source project is that it may not suffer from this process-heavy path 
to get a vulnerability fixed. This can be an enormous benefit, 
but it can sometimes be balanced by less documentation or 
less testing in a rush to get the fix out with an updated version. 
Open source projects, depending on their size, may be less 
concerned with release schedules and just issue a new minor 
version when a bug gets resolved. This isn’t always the case, of 
course.

One of the key ideas behind open source projects like Linux 
(and all of the packages that go into a regular Linux distri-
bution) is that you are less constrained by human resource 
issues. Anyone can pick up the source code and also pick up 
a bug and go fix it. This helps with speed to resolution, but it may not guarantee a high-
quality fix. It also doesn’t guarantee you will actually get contributors to your project. 

One of biggest advantages to open source projects is the ability for anyone to start  
a project and have anyone else who is interested work on it. It doesn’t require business 
plans and meetings to determine funding levels and returns on investment or marketing 

NOTE

Malicious code modifications 
have happened with open source 
projects in the past. One example 
was the ProFTP server that was 
hijacked in 2010. The source code 
available for download had been 
replaced with an altered copy that 
included a back door. Ironically, 
the person got in through an 
unpatched vulnerability in the FTP 
server software that was serving 
up the source code. 

NOTE

Nessus is a vulnerability scanner 
that began life as an open source 
project. However, the primary 
developers discovered they 
weren’t getting a lot of help,  
so they closed the source and 
started a business selling Nessus.
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strategies. It just takes someone willing to get started. There are a lot of ways to post 
source code so someone else can take a look at it and make alterations. Most open source 
software is licensed in such a way that any changes are required to also remain open.  
This is another contribution of the GNU Project and its founder Richard Stallman 
in particular.

Linux Distributions

There are a large number of Linux distributions, and their popularity waxes and wanes 
over time. Slackware, one of the early Linux distributions, retained tremendous popularity 
for a number of years. Now, however, it doesn’t even register in the top 25 Linux distri-
butions according to DistroWatch. At the time of this writing, it sits at number 33. 
Other distributions have fallen over time. RedHat was popular for a long time. Its level of 
support made it a top choice for a lot of users looking for Linux. Now, however, there is no 
so-called RedHat distribution. It has fragmented into RedHat Enterprise Linux, a piece of 
commercial software that you have to buy from RedHat, and Fedora, which is the devel-
opment distribution for RedHat. Fedora is more cutting-edge and is where RedHat tries  
out new concepts to get them stable before rolling them into RedHat Enterprise Linux.

Currently at the top of the popularity charts are Mint and Ubuntu, both derivatives of 
Debian. Debian has been around for a long time. It was created about 20 years ago by 
Ian Murdock, who wanted to pay homage to his girlfriend at the time, Debra. Debian is a 
merging of the name Ian with the name Debra. Debian has long been known in the Linux 
community as a very stable distribution of Linux. Often, it has been well behind what are 
considered current versions of packages because the maintainers were more interested  
in an operating system that was solid and didn’t crash than they were with keeping up 

with the bleeding edge.
Most distributions have pre-compiled packages. The distribution 

determines all the dependencies, meaning you might end up with a lot 
of extra packages that you don’t really want because some package has 
dependencies built in from another package. One way to avoid this is to 
build your own version of Linux. Some distributions, such as Linux From 

Stallman developed the GNU General Public License (GPL). Stallman doesn’t use the term 
copyright when talking about rights and privileges that are due software authors. Instead, he uses 
the term copyleft. Under copyleft and the GPL, any software that is based on GPLed software is 
required to retain the same rights as the original software. In other words, if I create a software 
project that I license using the GPL and you take my software, make some modifications to it,  
and want to release it yourself, you would also have to release it under the GPL.

NOTE

Gentoo is named after 
a particular species of 
small, fast penguin.
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Scratch and Gentoo Linux, are source-based distributions. The idea 
behind these sorts of distributions is that you decide how much or 
how little you want to put into it. This may have the upside of making 
it much faster and more responsive. However, the downside to these 
distributions is that all packages must be compiled from source, and 
compilation and installation can be a very time-consuming process. 
Getting one of these distributions up and running may take several 
hours or even the better part of a day, depending on the speed of your 
machine and your Internet connection. When you are finished, you 
will have exactly what you want, but every time you want to update, you will need to  
go through the compilation process again.

The C-I-A Triad

When it comes to security, there are three fundamental concepts. You may sometimes 
hear these referred to as C-I-A, the C-I-A triad, the A-I-C triad (to distinguish it from the 
U.S. intelligence agency), or maybe just the triad. The three concepts are as follows:

•	 Confidentiality—Keeping secrets is the essence of confidentiality. If someone 
says something to you in a crowded room, you won’t be assured of much in the 
way of confidentiality because it would be very easy for someone to overhear 
what the two of you are saying. If someone were to tap your phone and listen 
to your conversations, your confidentiality would be violated. This is certainly 
true when it comes to computer communications. If someone could listen in on 
network communications by port spanning on a switch, performing a spoofing 
attack, tapping the physical network cable, or some other method, your confi-
dentiality would be violated. One common way to protect against this is to use 
encryption. This is not a flawless answer, of course, because not all encryption 
is created equal. Also, there are issues with keeping the encryption keys secret 
and protected. In general, however, if you are worried about confidentiality, 
you will want to find a way to ensure someone can’t listen in on or intercept 
your conversations.

•	 Integrity—Ensuring that the data that is sent is the data that is received is what 
integrity is all about. It’s also about protecting against corruption. The MD5 
hash mentioned earlier that often accompanies software distributions is used to 
maintain the integrity of the data that is being transmitted. Note that integrity 
pertains to more than software downloads or messages that are emailed. It also 
relates to data at rest on disks. Any magnetic media like a hard drive or tape drive 
can be altered unexpectedly over a long period of time or from large electromag-
netic pulses. Additionally, hardware sometimes fails, which might mean that data 
that is either written or read gets corrupted. Fortunately, you can use cyclical 

! WARNING

Source-based distributions 
are not for the faint of 
heart, and are probably 
not best attempted by 
novice users. 
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