

JONES & BARTLETT LEARNING INFORMATION SYSTEMS SECURITY & ASSURANCE SERIES

Security Strategies
in Linux Platforms
and Applications
MICHAEL JANG AND RIC MESSIER

SECOND EDITION

World Headquarters
Jones & Bartlett Learning
5 Wall Street
Burlington, MA 01803
978-443-5000
info@jblearning.com
www.jblearning.com

Jones & Bartlett Learning books and products are available through most bookstores and online booksellers. To contact Jones & Bartlett Learning directly,
call 800-832-0034, fax 978-443-8000, or visit our website, www.jblearning.com.

Substantial discounts on bulk quantities of Jones & Bartlett Learning publications are available to corporations, professional associations, and other
qualified organizations. For details and specific discount information, contact the special sales department at Jones & Bartlett Learning via the above
contact information or send an email to specialsales@jblearning.com.

Copyright © 2017 by Jones & Bartlett Learning, LLC, an Ascend Learning Company

All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner.

The content, statements, views, and opinions herein are the sole expression of the respective authors and not that of Jones & Bartlett Learning, LLC. Reference
herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not constitute or imply its endorsement
or recommendation by Jones & Bartlett Learning, LLC and such reference shall not be used for advertising or product endorsement purposes. All trademarks
displayed are the trademarks of the parties noted herein. Security Strategies in Linux Platforms and Applications, Second Edition is an independent publication
and has not been authorized, sponsored, or otherwise approved by the owners of the trademarks or service marks referenced in this product.

Microsoft, Internet Explorer, Windows, Microsoft Office, Microsoft Security Development Lifecycle, and Microsoft Baseline Security Analyzer are either
registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. (ISC)2, CISSP, ISSAP, ISSMP, ISSEP, CSSLP, CCFP,
CAP, SSCP, and CBK are registered and service marks of (ISC)2, Inc.

There may be images in this book that feature models; these models do not necessarily endorse, represent, or participate in the activities represented in
the images. Any screenshots in this product are for educational and instructive purposes only. Any individuals and scenarios featured in the case studies
throughout this product may be real or fictitious, but are used for instructional purposes only.

This publication is designed to provide accurate and authoritative information in regard to the Subject Matter covered. It is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other professional service. If legal advice or other expert assistance is required, the
service of a competent professional person should be sought.

Production Credits
Chief Executive Officer: Ty Field
President: James Homer
Chief Product Officer: Eduardo Moura
SVP, Curriculum Solutions: Christopher Will
Director of Sales, Curriculum Solutions: Randi Roger
Editorial Management: High Stakes Writing, LLC,
 Lawrence J. Goodrich, President
Copy Editor, High Stakes Writing: Kate Shoup

ISBN: 978-1-284-09065-9

Library of Congress Cataloging-in-Publication Data
Jang, Michael H.
 Security strategies in Linux platforms and applications / Michael Jang, Ric Messier. — Second edition.
 pages cm
 Includes bibliographical references and index.
 ISBN 978-1-284-09065-9
1. Linux. 2. Operating systems (Computers) 3. Computer security. I. Messier, Ric. II. Title.
 QA76.76.O63J385 2016
 005.8—dc23
 2015028823

6048

Printed in the United States of America
19 18 17 16 15 10 9 8 7 6 5 4 3 2 1

Product Manager: Rainna Erikson
Product Management Assistant: Edward Hinman
Production Manager: Tina Chen
Associate Production Editor: Kristen Rogers
Senior Marketing Manager: Andrea DeFronzo
Manufacturing and Inventory Control Supervisor:
 Amy Bacus
Composition: GamutHue, LLC

Cover Design: Scott Moden
Rights & Media Manager: Joanna Lundeen
Rights & Media Research Coordinator:
 Mary Flatley
Cover Image: © leungchopan/Shutterstock
Printing and Binding: Edwards Brothers Malloy
Cover Printing: Edwards Brothers Malloy

mailto:info@jblearning.com
http://www.jblearning.com
http://www.jblearning.com
mailto:specialsales@jblearning.com.Copyright

iii

Contents

Preface xix

Acknowledgments xxiii

PART ONE Is Linux Really Secure? 1

CHAPTER 1 Security Threats to Linux 2
The Origins of Linux 4

Security in an Open Source World 5

Linux Distributions 8

The C-I-A Triad 9

Linux as a Security Device 11

Linux in the Enterprise 13

Recent Security Issues 14

CHAPTER SUMMARY 16

KEY CONCEPTS AND TERMS 16

CHAPTER 1 ASSESSMENT 17

CHAPTER 2 Basic Components of Linux Security 18
Linux Security Relates to the Kernel 19

The Basic Linux Kernel Philosophy 20
Basic Linux Kernels 20
Distribution-Specific Linux Kernels 21
Custom Linux Kernels 21
Linux Kernel Security Options 24

Securing a System During the Boot Process 24

Physical Security 24
The Threat of the Live CD 24
Boot Process Security 25
More Boot Process Issues 25
Virtual Physical Security 26

Linux Security Issues Beyond the Basic Operating System 26

Service Process Security 26
Security Issues with the GUI 27

©
 Rodolfo Clix/Dream

stim
e.com

http://www.Dreamstime.com

iv Contents

Linux User Authentication Databases 28

Protecting Files with Ownership, Permissions, and Access Controls 30

Firewalls and Mandatory Access Controls in a Layered Defense 31

Firewall Support Options 31
Mandatory Access Control Support 33

Protecting Networks Using Encrypted Communication 34

Tracking the Latest Linux Security Updates 35

Linux Security Updates for Regular Users 35
Linux Security Updates for Home Hobbyists 35
Linux Security Updates for Power Users 36
Security Updates for Linux Administrators 36
Linux Security Update Administration 37

The Effect of Virtualization on Security 37

Variations Between Distributions 38

A Basic Comparison: Red Hat and Ubuntu 38
More Diversity in Services 39

CHAPTER SUMMARY 42

KEY CONCEPTS AND TERMS 43

CHAPTER 2 ASSESSMENT 43

PART TWO Layered Security and Linux 45

CHAPTER 3 Starting Off: Getting Up and Running 46
Picking a Distribution 47

Picking a Delivery Platform 51

Physical System 52
Virtual Machines 53
Cloud Services 55

Choosing a Boot Loader 58

Linux Loader 58
Grand Unified Boot Loader 59

Services 61

Runlevels 65
Wrappers 68

inetd and xinetd 68

R-services 70

CHAPTER SUMMARY 71

KEY CONCEPTS AND TERMS 72

CHAPTER 3 ASSESSMENT 72

CHAPTER 4 User Privileges and Permissions 74
The Shadow Password Suite 75

/etc/passwd 76
/etc/group 76
/etc/shadow 77
/etc/gshadow 79
Defaults for the Shadow Password Suite 79
Shadow Password Suite Commands 81

Available User Privileges 81

Securing Groups of Users 84

User Private Group Scheme 84
Create a Special Group 84

Configuring the Hierarchy of Administrative Privileges 85

Administrative Privileges in Services 86
The su and sg Commands 86
Options with sudo and /etc/sudoers 87

Regular and Special Permissions 90

The Set User ID Bit 90
The Set Group ID Bit 91
The Sticky Bit 92

Tracking Access Through Logs 92

Authorization Log Options 92
Authorization Log Files 93

Pluggable Authentication Modules 94

The Structure of a PAM Configuration File 94
PAM Configuration for Users 96

Authorizing Access with the Polkit 96

How the Polkit Works 97
Polkit Concepts 97
The Polkit and Local Authority 97

Network User Verification Tools 98

NIS If You Must 99
LDAP Shares Authentication 100

Best Practices: User Privileges and Permissions 100

CHAPTER SUMMARY 102

KEY CONCEPTS AND TERMS 102

CHAPTER 4 ASSESSMENT 102

Contents v

vi Contents

CHAPTER 5 Filesystems, Volumes, and Encryption 104

Filesystem Organization 105

Filesystem Basics 105
The Filesystem Hierarchy Standard 106
Good Volume Organization Can Help Secure a System 108
Read-Only Mount Points 111

How Options for Journals, Formats, and File Sizes Affect Security 112

Partition Types 113
The Right Format Choice 113
Available Format Tools 114

Using Encryption 114

Encryption Tools 114
Encrypted Files 115
Encrypted Directories 118
Encrypted Partitions and Volumes 119

Local File and Folder Permissions 120

Basic File Ownership Concepts 121
Basic File-Permission Concepts 121
Changing File Permissions 122

Networked File and Folder Permissions 124

NFS Issues 124
Samba/CIFS Network Permissions 125
Network Permissions for the vsftp Daemon 127

Configuring and Implementing Quotas on a Filesystem 128

The Quota Configuration Process 129
Quota Management 130
Quota Reports 131

How to Configure and Implement Access Control Lists on a Filesystem 132

Configure a Filesystem for ACLs 132
ACL Commands 133
Configure Files and Directories with ACLs 133

Best Practices: Filesystems, Volumes, and Encryption 134

CHAPTER SUMMARY 135

KEY CONCEPTS AND TERMS 136

CHAPTER 5 ASSESSMENT 136

CHAPTER 6 Securing Services 138
Starting a Hardened System 140

Service Management 145

SysV Init 146
Upstart 151
Systemd 152

Hardening Services 154

Using Mandatory Access Controls 157

Security Enhanced Linux 157
AppArmor 159

Servers Versus Desktops 160

Protecting Against Development Tools 161

CHAPTER SUMMARY 163

KEY CONCEPTS AND TERMS 164

CHAPTER 6 ASSESSMENT 164

CHAPTER 7 Networks, Firewalls, and More 166
Services on Every TCP/IP Port 167

Protocols and Numbers in /etc/services 168
Protection by the Protocol and Number 168

Obscurity and the Open Port Problem 169

Obscure Ports 169
Opening Obscure Open Ports 169
Obscurity by Other Means 170

Protect with TCP Wrapper 171

What Services Are TCP Wrapped? 171
Configure TCP Wrapper Protection 171

Packet-Filtering Firewalls 173

Basic Firewall Commands 174
Firewalld 183
A Firewall for the Demilitarized Zone 185
A Firewall for the Internal Network 187

Alternate Attack Vectors 187

Attacks Through Nonstandard Connections 188
Attacks on Scheduling Services 189

Wireless-Network Issues 191

Linux and Wireless Hardware 191
Encrypting Wireless Networks 191
Bluetooth Connections 192

Contents vii

viii Contents

Security Enhanced Linux 193

The Power of SELinux 194
Basic SELinux Configuration 194
Configuration from the Command Line 194
The SELinux Administration Tool 196
The SELinux Troubleshooter 197
SELinux Boolean Settings 197

Setting Up AppArmor Profiles 202

Basic AppArmor Configuration 202
AppArmor Configuration Files 202
AppArmor Profiles 203
AppArmor Access Modes 204
Sample AppArmor Profiles 204
AppArmor Configuration and Management Commands 204
An AppArmor Configuration Tool 206

Best Practices: Networks, Firewalls, and TCP/IP Communications 206

CHAPTER SUMMARY 208

KEY CONCEPTS AND TERMS 208

CHAPTER 7 ASSESSMENT 209

CHAPTER 8 Networked Filesystems and Remote Access 210
Basic Principles for Systems with Shared Networking Services 211

Configure an NTP Server 212
Install and Configure a Kerberos Server 212
Basic Kerberos Configuration 213
Additional Kerberos Configuration Options 215

Securing NFS as If It Were Local 216

Configure NFS Kerberos Tickets 216
Configure NFS Shares for Kerberos 216

Keeping vsftp Very Secure 217

Configuration Options for vsftp 217
Additional vsftp Configuration Files 219

Linux as a More Secure Windows Server 219

Samba Global Options 220
Samba as a Primary Domain Controller 224

Making Sure SSH Stays Secure 225

The Secure Shell Server 225
The Secure Shell Client 228
Create a Secure Shell Passphrase 228

Basic Principles of Encryption on Networks 230

Host-to-Host IPSec on Red Hat 231
Host-to-Host IPSec on Ubuntu 231
Network-to-Network IPSec on Red Hat 233
Network-to-Network IPSec on Ubuntu 233

Helping Users Who Must Use Telnet 233

Persuade Users to Convert to SSH 234
Install More Secure Telnet Servers and Clients 235

Securing Modem Connections 235

The Basics of RADIUS 236
RADIUS Configuration Files 236

Moving Away from Cleartext Access 236

The Simple rsync Solution 238
E-mail Clients 238

Best Practices: Networked Filesystems and Remote Access 239

CHAPTER SUMMARY 241

KEY CONCEPTS AND TERMS 241

CHAPTER 8 ASSESSMENT 242

CHAPTER 9 Networked Application Security 243
Options for Secure Web Sites with Apache 244

The LAMP Stack 245
Apache Modules 247
Security-Related Apache Directives 248
Configure Protection on a Web Site 251
Configure a Secure Web site 252
Configure a Certificate Authority 252
mod_security 254

Working with Squid 255

Basic Squid Configuration 256
Security-Related Squid Directives 257
Limit Remote Access with Squid 258

Protecting DNS Services with BIND 258

The Basics of DNS on the Internet 258
DNS Network Configuration 259
Secure BIND Configuration 259
A BIND Database 261
DNS Targets to Protect 261
Domain Name System Security Extensions 261

Contents ix

x Contents

Mail Transfer Agents 263

Open Source sendmail 263
The Postfix Alternative 266
Dovecot for POP and IMAP 267
More E-mail Services 268

Using Asterisk 268

Basic Asterisk Configuration 269
Security Risks with Asterisk 269

Limiting Printers 270

Printer Administrators 271
Shared Printers 271
Remote Administration 271
The CUPS Administrative Tool 272

Protecting Time Services 273

Obscuring Local and Network Services 273

Best Practices: Networked Application Security 274

CHAPTER SUMMARY 275

KEY CONCEPTS AND TERMS 276

CHAPTER 9 ASSESSMENT 276

CHAPTER 10 Kernel Security Risk Mitigation 278
Distribution-Specific Functional Kernels 279

Kernels by Architecture 280
Kernels for Different Functions 281

The Stock Kernel 282

Kernel Numbering Systems 283
Production Releases and More 283
Download the Stock Kernel 284
Stock Kernel Patches and Upgrades 284

Managing Security and Kernel Updates 285

Stock Kernel Security Issues 285
Distribution-Specific Kernel Security Issues 286
Installing an Updated Kernel 286

Development Software for Custom Kernels 287

Red Hat Kernel Development Software 287
Ubuntu Kernel Development Software 288

Kernel-Development Tools 288

Before Customizing a Kernel 289
Start the Kernel Customization Process 289
Kernel Configuration Options 291

Building Your Own Secure Kernel 299

Download Kernel Source Code 300
Download Ubuntu Kernel Source Code 300
Download Red Hat Kernel Source Code 300
Install Required Development Tools 301
Navigate to the Directory with the Source Code 301
Compile a Kernel on Ubuntu Systems 302
Compile a Kernel on Red Hat Systems 302
Compile a Stock Kernel 302
Install the New Kernel and More 303
Check the Boot Loader 303
Test the Result 303

Increasing Security Using Kernels and the /proc/ Filesystem 304

Don’t Reply to Broadcasts 304
Protect from Bad ICMP Messages 305
Protect from SYN Floods 305
Activate Reverse Path Filtering 305
Close Access to Routing Tables 306
Avoid Source Routing 306
Don’t Pass Traffic Between Networks 307
Log Spoofed, Source-Routed, and Redirected Packets 307

Best Practices: Kernel Security Risk Mitigation 307

CHAPTER SUMMARY 309

KEY CONCEPTS AND TERMS 309

CHAPTER 10 ASSESSMENT 309

CHAPTER

PART THREE Building a Layered Linux Security Strategy 311

11 Managing Security Alerts and Updates 312
Keeping Up with Distribution Security 313

Red Hat Alerts 314
Red Hat Enterprise Linux 314
CentOS Linux 314
Fedora Core Linux 315
Ubuntu Alerts 315

Keeping Up with Application Security 316

The OpenOffice.org Suite 317
Web Browsers 317
Adobe Applications 318
Service Applications 318

Contents xi

xii Contents

Antivirus Options for Linux Systems 320

The Clam AntiVirus System 321
AVG Antivirus 322
The Kaspersky Antivirus Alternative 322
SpamAssassin 322
Detecting Other Malware 323

Using Bug Reports 323

Ubuntu’s Launchpad 324
Red Hat’s Bugzilla 325
Application-Specific Bug Reports 325

Security in an Open Source World 327

The Institute for Security and Open Methodologies 328
The National Security Agency 328
The Free Software Foundation 328
User Procedures 329

Deciding Between Automated Updates or Analyzed Alerts 329

Do You Trust Your Distribution? 330
Do You Trust Application Developers? 330
Do You Trust Service Developers? 330

Linux Patch Management 331

Standard yum Updates 332
Updates on Fedora 332
Updates on Red Hat Enterprise Linux 333
Standard apt-* Updates 333

Options for Update Managers 335

Configuring Automated Updates 335
Automatic Red Hat Updates 337
Pushing or Pulling Updates 338
Local or Remote Repositories 338
Configuring a Local Repository 338

Commercial Update Managers 339

The Red Hat Network 340
Canonical Landscape 341
Novell’s ZENworks 341

Open Source Update Managers 342

Various apt-* Commands 342
Various yum commands 343
Red Hat Spacewalk 345

Best Practices: Security Operations Management 345

CHAPTER SUMMARY 346

KEY CONCEPTS AND TERMS 347

CHAPTER 11 ASSESSMENT 347

CHAPTER 12 Building and Maintaining a Security Baseline 349
Configuring a Simple Baseline 350

A Minimal Red Hat Baseline 351
A Minimal Ubuntu Baseline 353

Read-Only or Live Bootable Operating Systems 354

Appropriate Read-Only Filesystems 355
Live CDs and DVDs 356

Keeping the Baseline Up to Date 356

A Gold Baseline 357
Baseline Backups 359

Monitoring Local Logs 359

The System and Kernel Log Services 359
Logs from Individual Services 363

Consolidating and Securing Remote Logs 365

Default rsyslog Configuration 365
The Standard rsyslog Configuration File 365

Identifying a Baseline System State 368

Collect a List of Packages 368
Compare Files, Permissions, and Ownership 369
Define the Baseline Network Configuration 370
Collect Runtime Information 370

Checking for Changes with Integrity Scanners 371

Tripwire 371
Advanced Intrusion Detection Environment 372

Best Practices: Building and Maintaining a Secure Baseline 373

CHAPTER SUMMARY 374

KEY CONCEPTS AND TERMS 374

CHAPTER 12 ASSESSMENT 374

CHAPTER 13 Testing and Reporting 376
Testing Every Component of a Layered Defense 377

Testing a Firewall 377
Testing Various Services 378
Testing Passwords 381
Testing Mandatory Access Control Systems 382

Checking for Open Network Ports 382

The telnet Command 382
The netstat Command 383
The lsof Command 386
The nmap Command 387

Contents xiii

xiv Contents

Running Integrity Checks of Installed Files and Executables 392

Verifying a Package 393
Performing a Tripwire Check 394
Testing with the Advanced Intrusion Detection Environment 395

Ensuring that Security Does Not Prevent Legitimate Access 398

Reasonable Password Policies 398
Allowing Access from Legitimate Systems 401

Monitoring Virtualized Hardware 401

Virtual Machine Hardware 402
Virtual Machine Options 402
Monitoring the Kernel-Based Virtual Machine (KVM) 403

Standard Open Source Security-Testing Tools 404

Snort 405
Netcat and the nc Command 407

Vulnerability Scanners for Linux 408

Nessus 408
OpenVAS 410
Nexpose 410

Where to Install Security-Testing Tools 412

Hint: Not Where Attackers Can Use Them Against You 412
Some Tools Are Already Available on Live CDs 413

Best Practices: Testing and Reporting 415

CHAPTER SUMMARY 416

KEY CONCEPTS AND TERMS 416

CHAPTER 13 ASSESSMENT 417

CHAPTER 14 Detecting and Responding to Security Breaches 418
Performing Regular Performance Audits 419

The Basic Tools: ps and top    420
The System Status Package 421
For Additional Analysis 421

Making Sure Users Stay Within Secure Limits 422

Appropriate Policies 423
Education 423
User Installation of Problematic Services 424

Logging Access into the Network 424

Identifying Users Who Have Logged In 424
System Authentication Logs 425

Monitoring Account Behavior for Security Issues 426

Downloaded Packages and Source Code 426
Executable Files 426

Creating an Incident Response Plan 427

Increased Vigilance 428
Should You Leave the System On? 428
Acquiring the Memory Contents 429

Having Live Linux CDs Ready for Forensics Purposes 433

Helix Live Response 433
SANS Investigative Forensics Toolkit 435
Digital Evidence and Forensics Toolkit 435
Build Your Own Media 435
Forensic Live Media 436

When You Put Your Plan into Action 437

Confirming the Breach 437
Identifying Compromised Systems 438
Having Replacement Systems in Place 438

Secure Backup and Recovery Tools 439

Disk Images for Later Investigation 439
The rsync Command 440
Mount Encrypted Filesystems 440

The Right Way to Save Compromised Data as Evidence 441

Basic Principles for Evidence 441
Remembering the Volatile Data 442
Preserving the Hard Disks 442

Disaster Recovery from a Security Breach 442

Determining What Happened 443
Prevention 443
Replacement 443

How and When to Share with the Open Source Community 444

If the Security Issue Is Known… 444
If the Security Issue Has Not Been Reported… 444

Best Practices: Security Breach Detection and Response 445

CHAPTER SUMMARY 446

KEY CONCEPTS AND TERMS 446

CHAPTER 14 ASSESSMENT 447

CHAPTER 15 Best Practices and Emerging Technologies 448
Maintaining a Gold Baseline 449

Monitoring Security Reports 450
Working Through Updates 450
Recalibrating System Integrity 450

Ensuring Availability with Redundancy 451

A Gold Physical Baseline 451
A Gold Virtual Baseline Host 451

Contents xv

xvi Contents

Identifying Your Support Options 453

Red Hat Support Options 454
Canonical Support Options 455
Open Source Community Support 455

Checking Compliance with Security Policies 456

User Security 456
Administrator Security 456

Keeping the Linux Operating System Up to Date 457

Baseline Updates 457
Functional Bugs 458
New Releases 458

Keeping Distribution-Related Applications Up to Date 459

Server Applications 459
Desktop Applications 461

Managing Third-Party Applications 461

Licensing Issues 461
Support Issues 462

Sharing Problems and Solutions with the Community 462

Which Community? 462
Sharing with Developers 463
Sharing on Mailing Lists 464

Testing New Components Before Putting Them into Production 464

Testing Updates 465
Documenting Results 465
Beta Testing 466

Keeping Up with Security on Your Systems 466

A New Firewall Command 466
More Mandatory Access Controls 466
Penetration-Testing Tools 467
Single Sign-On 468
Incident Response 468

CHAPTER SUMMARY 469

KEY CONCEPTS AND TERMS 470

CHAPTER 15 ASSESSMENT 470

APPENDIX A Answer Key 471

APPENDIX B Standard Acronyms 473

Glossary of Key Terms 477

References 491

Index 497

To my beautiful wife, Donna,
who has made life worth living again

—Michael Jang

To those who have made me who I am today:
Berkeley Breathed and Hunter S. Thompson

—Ric Messier

xix

Preface

Purpose of This Book

This book is part of the Information Systems Security & Assurance Series from Jones
& Bartlett Learning (www.jblearning.com). Designed for courses and curriculums in
IT Security, Cybersecurity, Information Assurance, and Information Systems Security, this
series features a comprehensive, consistent treatment of the most current thinking and
trends in this critical subject area. These titles deliver fundamental information-security
principles packed with real-world applications and examples. Authored by professionals
experienced in information systems security, they deliver comprehensive information on
all aspects of information security. Reviewed word for word by leading technical experts
in the field, these books are not just current, but forward-thinking—putting you in the
position to solve the cybersecurity challenges not just of today, but of tomorrow as well.

Security Strategies in Linux Platforms and Applications, Second Edition, covers every
major aspect of security on a Linux system. The first part of this book describes the risks,
threats, and vulnerabilities associated with Linux as an operating system. Linux is one of
the predominant operating systems used for public-facing servers on the Internet. As a
result, a big focus for this book is on implementing strategies that you can use to protect
your system implementations, even in cases where they are public facing. To that end,
this book uses examples from two of the major distributions built for the server, Red Hat
Enterprise Linux and Ubuntu (Server Edition).

With Linux, security is much more than just firewalls and permissions. Part 2 of
the book shows you how to take advantage of the layers of security available to Linux—
user and group options, filesystems, and security options for important services, as well as
the security modules associated with AppArmor and SELinux. It also covers encryption
options where available.

The final part of this book explores the use of both open source and proprietary tools when
building a layered security strategy for your Linux operating system environments. With these
tools, you can define a system baseline, audit the system state, monitor system performance,
test network vulnerabilities, detect security breaches, and more. You will also learn basic
practices associated with security alerts and updates, which are just as important.

As with any operating system, a Linux implementation requires strategies to harden
it against attack. Linux is based on another operating system with a very long history,
and it inherits the lessons learned over that history as well as some of the challenges. With
Linux, you get a lot of eyes looking at the programs, which many consider to be a benefit
of using open source programs and operating systems. While there are advantages,

©
 Rodolfo Clix/Dream

stim
e.com

http://www.jblearning.com
http://www.Dreamstime.com

xx Preface

however, there are risks associated as well. Fortunately, a large community is built
around improving Linux and the various software packages that go into it. This includes
the National Security Agency (NSA), which initially developed a set of security exten-
sions that has since been implemented into the Linux kernel itself.

When you are finished with this book, you will understand the importance of custom
firewalls, restrictions on key services, golden baseline systems, and custom local reposi-
tories. You will even understand how to customize and recompile the Linux kernel.
You will be able to use open source and commercial tools to test the integrity of various
systems on the network. The data you get from such tools will identify weaknesses and
help you create more secure systems.

Learning Features

The writing style of this book is practical and conversational. Each chapter begins with
a statement of learning objectives. Step-by-step examples of information security concepts
and procedures are presented throughout the text. Illustrations are used both to clarify
the material and to vary the presentation. The text is sprinkled with notes, tips, FYIs,
warnings, and sidebars to alert the reader to additional helpful information related to the
subject under discussion. Chapter assessments appear at the end of each chapter, with
solutions provided in the back of the book.

Throughout this book are references to commands and directives. They may be
included in the body of a paragraph in a monospaced font, like this: apt-get update.
Other commands or directives may be indented between paragraphs, like the directive
shown here:

deb http://us.archive.ubuntu.com/ubuntu/ lucid main restricted

When a command is indented between paragraphs, it’s meant to include a Linux
command line prompt. You will note two different prompts in the book. The first prompt
is represented with a $. As shown here, it represents the command-line prompt from
a regular user account:

$ ls -ltr > list_of_files

The second prompt is represented by a #. As shown here, it represents the command-line
prompt from a root administrative account:

# /usr/sbin/apachectl restart 

Sometimes, the command or directive is so long, it has to be broken into multiple lines due
to the formatting requirements of this book. Line wraps are indicated by a curved arrow,
as is shown at the start of what looks like the second line of the iptables command.
It is just a continuation arrow, which would be typed as a continuous command on the
command line or an appropriate configuration file.

iptables -A RH-Firewall-1-INPUT -i eth0 -s 10.0.0.0/8 

-j LOG --log-prefix “Dropped private class A addresses”.

Preface xxi

Chapter summaries are included in the text to provide a rapid review of the material and
to help students understand the relative importance of the concepts presented.

Audience

The material is suitable for undergraduate or graduate computer science majors or
information science majors, students at a two-year technical college or community college
who have a basic technical background, or readers who have a basic understanding
of IT security and want to expand their knowledge. It assumes basic knowledge of Linux
administration at the command-line interface.

xxiii

Acknowledgments

I would like to thank Jones & Bartlett Learning and David Kim of Security Evolutions
for the opportunity to write this book and be a part of the Information Systems Security
& Assurance Series project. This book required a more substantial team effort than ordinary
book projects. I would also like to thank the amazing project manager, Kim Lindros;
the top-notch technical reviewer, Mike Chapple; the sharp copy editor, Kate Shoup;
the marvelous compositor, Mia Saunders; the eagle-eyed proofreader, Ruth Walker;
and Larry Goodrich along with Angela Silvia of High Stakes Writing for facilitating
the entire process.

In addition, I acknowledge the gracious help of Billy Austin of the SAINT corporation,
along with Mike Johnson of AccessData with respect to their products. The author also
acknowledges the fortitude of Linux security professionals everywhere, white-hat hackers
at heart who have to deal with cultural biases from the mainstream security community
along with the legitimate fears of the open source community.

Most importantly, I could not do what I do without the help and support of my wife,
Donna. She makes everything possible for me.

Michael Jang

Writing any book is a process. Revising an existing book for a second edition is also a
process. It takes a team of people to get from conception to completion. Thanks to Mike,
Kate, Mia, Larry, and everyone else who helped get this second edition to the goal line.

Mostly, I’d like to acknowledge all those people who jump into things without any
idea what they are getting themselves into. This fearlessness is the best way to jump
into something new and guarantee that you are going to learn a lot. Try it some time
if you haven’t already.

Ric Messier
©

 Rodolfo Clix/Dream
stim

e.com

http://www.Dreamstime.com

About the Authors

MICHAEL JANG is a full-time writer, specializing in Linux and related certifications.
His experience with computers dates back to the days of badly shuffled punch cards. He
has written books such as RHCE Red Hat Certified Engineer Study Guide, LPIC-1 In Depth,
Ubuntu Server Administration, and Linux Annoyances for Geeks. He is also the author of
numerous video courses, and teaches preparation courses on Red Hat certification.

RIC MESSIER has been working with Unix and Unix-like operating systems since the
mid-1980s. In the intervening decades, he has done system administration, network
engineering, penetration testing, and programming; developed managed security services;
and worked in operations security and a number of other jobs in between.

Ric is a security professional who has worked with a number of companies from large
Internet service providers to small software companies. He has run a small networking
and security consulting practice for the last several years. Additionally, he has taught
courses at both the graduate and undergraduate level. Currently, in addition to writing
books and recording training videos, he is the program director for Cyber Security and
Digital Forensics at Champlain College in Burlington, Vt. He also maintains a blog
on information security and digital forensics at securitykilroy.blogspot.com.

http://www.securitykilroy.blogspot.com

PART ONE

Is Linux Really Secure?

Security Threats to Linux 2

Basic Components of Linux Security 18

©
 Rodolfo Clix/Dream

stim
e.com

ONE OF THE MOST SIGNIFICANT ATTACKS in the more than 40-year history of
the Internet happened in the late 1980s. The overall numbers may not have
been impressive, but when you look at it from a percentage perspective,

it may have been the most devastating attack ever. In November of 1988, Robert
T. Morris released a worm from a system located at the Massachusetts Institute
of Technology (MIT), although he was at Cornell. The worm is estimated to have
attacked 10 percent of the systems that were then connected to the Internet. The
impact of the attack continued over several days while various networks that were
attached to the NSFNet backbone were disconnected to get systems restored and
patched. (The NSFNet was created by the National Science Foundation in the 1980s
to pull together all the disparate specialized and regional networks. Initially, the
links to the NSFNet were 56Kbps. The NSFNet took over where the ARPANET left
off and became the launch point for what we now call the Internet.)

In addition to increasing the awareness of system vulnerabilities, the worm led to
the creation of a Computer Emergency Response Team (CERT) at Carnegie Mellon.
There were other actions taken to help coordinate activities in the case of another
network-wide attack. Less than 15 years later, these coordination efforts were
necessary when the first documented and large-scale distributed denial of service
(DDoS) attack took place in February of 2000. A young man from Montreal, who
called himself Mafiaboy, launched attacks against a number of prominent Web sites
using the Stacheldraht tool in control of a botnet.

The significance of these two events is that both targeted system weaknesses
on Unix-like operating systems. The worm attacked several Unix services that
could easily be exploited by remote users. Some of these services were weak and
unsecure to begin with, while others were simply a result of exploitable bugs in the
software. The DDoS attacks were a result, in part, of the way the networking stacks
within these operating systems were written. They were vulnerable to particular
types of attacks that rendered the systems incapable of taking in more network
requests. While some of this was because of the way the network protocols were

©
 Rodolfo Clix/Dream

stim
e.com

Security Threats to Linux1

CHAPTER

2

http://www.Dreamstime.com

Chapter 1 Topics

This chapter covers the following topics and concepts:

•	 What the origins of Linux are

•	 How security works in the open source world

•	 What distributions of Linux exist

•	 What the C-I-A triad is

•	 How Linux operates as a security device

•	 What Linux’s place in the enterprise is

•	 What some examples of recent security issues are

Chapter 1 Goals

When you complete this chapter, you will be able to:

•	 Describe the basics of security in an open source world

•	 Explain various roles of Linux systems in the IT architecture

•	 Differentiate between Linux and the operating environment that runs
on top of Linux

•	 Explain threats that can target Linux

designed, some was also a result of the implementation of these protocols within
the operating system itself.

According to W3 Techs Web technology surveys, servers based on the Unix
operating system make up two-thirds of the systems on the Internet. So the better
we can understand how to provide security to these servers, the less vulnerable
to attack they will be. Of course, the reality is that no operating system is secure.
Security isn’t a state. Security results from appropriate controls and processes, and
can’t be measured at a point in time. Understanding the appropriate technical
means that need to be implemented is part of the process, but the state of a
system constantly changes. This is due in no small part to influences from the
outside. Among these is the so-called “research” constantly performed both by
those who hope to improve the resilience of the system against attack and by
those who wish to weaken that resilience.

Because the topic under consideration here is Linux, how does Unix factor into
the equation? As it turns out, one must go back several decades to explain it.

3

1
Security Threats

to Linux

The Origins of Linux

The Linux operating system is part of a very long and complicated family tree that began
in the 1960s. In 1964, MIT joined with General Electric and Bell Labs to create a multi-
user, time-sharing operating system. At the time, computers cost hundreds of thousands
if not millions of dollars and were generally used only by a single user or process at a
time. The goal of this project was to create an operating system that would allow multiple
processes to run, seemingly simultaneously. The operating system was named Multics,
short for Multiplexed Information and Computing Service, and its design reflected the
concern about protecting one user from another user.

Two members of the Multics team from Bell Labs, Ken Thompson and Dennis Ritchie,
became concerned that the system was becoming overly complex because of the design
goals. In 1969, Bell Labs pulled out of the five-year-old project. When that happened,
Thompson and Ritchie decided to develop their own operating system with goals almost
entirely opposite to those of Multics. Thompson and Ritchie called their operating system
Unics as a play on the name Multics. The “Uni” in Unics stood for uniplexed, suggesting
that the goal was to create a small, workable operating system that didn’t have multiuser
functionality as one of its aims. Where Thompson and Ritchie felt Multics was over-
designed, they worked to create a system that was easier to use but still employed the
hierarchical file system and the shell that were created for Multics. In general, though,
where Multics favored large, complex user commands, Unics was developed with a lot
of very small, single-purpose commands that could be chained together to create more
complex functionality.

Fast forward 20 years or so and the name Unics had been changed to Unix, AT&T
had been broken apart, and there were several versions of Unix available from AT&T,
University of California at Berkeley, Microsoft, and others. By the mid-1980s, one of the
advantages of Unix was that the source code was readily available and the design was
simple enough that it made a good source of study for computer science students.

In 1987, a computer science professor and textbook author named Andrew Tanenbaum
released a Unix-like operating system called MINIX in an appendix to an operating system
textbook. The operating system was also available on a set of floppy disks. Where Unix

Linux is only the operating system, also called the kernel. This is what interfaces with the hardware
to manage memory and file systems and make sure programs are run. Sun Microsystems used
to make a distinction between its operating system, which it called SunOS, and the operating
environment, which was Solaris. The operating environment is all of the programs and the user
interface that communicates with the user and the kernel.

4 PART 1 | Is Linux Really Secure?

was primarily a large system operating system, MINIX was targeted at IBM PC-compatible
systems. Not surprisingly, a large number of students began using the source code and
talking about it on USENET. One of those students was Linus Torvalds, who began adding
features and modifying what was in MINIX. Torvalds went on to release his version of the
operating system, which he called Linux. Linux was first released on October 5, 1991.

Since its release, a number of open source projects have contributed to Linux. One of
the most significant over the last 20 years has been GNU’s Not Unix (GNU), which was an
attempt to create a Unix-like operating system.

Linux itself is a very fractured collective of different distributions. A distribution is a
collection of a kernel, userland, graphical interface, and package-management system.
The package-management system is used to install software. Package management is
developed by the maintainers of the distribution, and there are many package-management
systems available. RedHat (Fedora, RedHat Enterprise Linux, CentOS) uses RedHat
Package Manager (RPM), though it also supports the Yellowdog Updater, Modified (Yum)
that will check dependencies and download and install requested packages. Debian-
based systems like Mint and Ubuntu use the Advanced Package Tool (APT) and the
related utilities.

Security in an Open Source World

Linux is part of a large collection of software developed by teams that provide access to
the source code and all the programming language text from which the final executable
is generated for anyone who wants to look at it. This approach is called open source
because the source code is open for anyone to see. Software developed by companies
that ask you to pay for the program is commonly called closed source in addition to being
commercial software.

Because the GNU project developed the common Unix utilities that users would employ if
they were using a command-line shell, not to mention the compiler that is commonly used to
build the Linux kernel, many GNU proponents prefer that the entire package be referred to as
GNU/Linux. This has been the source of a number of long and heated debates over the years.
In fact, it is sometimes referred to as a religious war because neither side is likely to convert
the other side to their way of thinking. While it may be slightly inaccurate, the term Linux is
generally used to describe the entire operating environment. Otherwise, you may have to start
referring to a complete system as KDE/Apache/GNU/Linux or something equally unwieldy just
to make sure all the different groups get appropriate billing.

CHAPTER 1 | Security Threats to Linux 5

1
Security Threats

to Linux

The idea behind open source goes back many decades to a
time when programmers just wrote programs for the fun of it,
leaving the source around for someone else to look at and improve.
You didn’t pay for software. The system software came with the
machine you bought and the computer companies made their
money on hardware.

The thing about programming is that everyone has a different
style. Some people are far better at writing efficient code, while
others are better at writing code that performs a lot of checks,
making the resulting program more resistant to attack. Because
of this, having access to source code means a couple of things:

•	 You can learn from the source code. You can see clearly what it does. You can
have a better understanding of how the program operates.

•	 If you are so inclined, you can make fixes to the source in case there are bugs.

One of the leading proponents of open source software is Richard Stallman, who created
the GNU project while he was at MIT. Stallman believed all source code should be available.
This should not be read as a belief that everything should be without cost. There is a
concept of gratis versus libre, commonly rendered in the open source community as
“free as in free speech, not free as in free beer.” Gratis means without cost, as in free beer.
Libre means without restriction, as in free speech. Stallman has long said that he believes
that if he finds something that isn’t working right with a piece of software, he should be
able to go into the source code and fix it. Without access to the source, he doesn’t have
that freedom, which he believes is essential.

What sorts of security issues are there with open source? First, just because the source
code is open doesn’t mean the project has processes in place to ensure code is written
securely. It also doesn’t mean there has been rigorous testing. If the only testing that has
been done is by the developer, then there hasn’t been sufficient testing done on the source
code. Developers have a different focus when they are testing code they have written
than someone who is intent on doing complete security testing or even just regression

NOTE

In a university setting,
having access to source code
enabled you to learn from
what others were doing. If
someone else had a better
idea and improved what was
there, then everyone could
learn and benefit from it.

There are a number of well-known aphorisms that suggest that the more bugs you find,
the more bugs there are. Proponents of open source suggest that making sure everyone has
access to the code will lead to fewer bugs. More eyeballs means there are more people who
can find issues and fix them. Open source detractors may counter that by saying not all open
source developers are highly skilled and trained. This can lead to more bugs because the best
programmers may not always contribute to well-used software projects.

6 PART 1 | Is Linux Really Secure?

testing. Larger projects have the advantage of ensuring that
people who are competent at testing perform full testing before
releases are issued. Smaller projects don’t have the luxury of
dedicating a lot of people to testing, which can potentially put
them at risk.

Open source projects put their source code out on the
open Internet at public repositories. Along with the source
code, there is generally a cryptographic hash generated to
demonstrate that what you downloaded is what you are
actually looking for. Where you are protected with this is if the
download gets corrupted. It doesn’t protect you if the tarball
has been altered unless the person doing the altering is really
dumb. If the tarball gets modified, an attacker is going to
generate a new MD5 and replace the existing one so everything
looks correct. If an attacker can get access to the repository,
he or she can upload modified source code that may include
a back door or some other malicious modification.

Commercial software may suffer from the problem of lengthy processes that can get
in the way of the speedy resolution of problems. A vulnerability must be logged, investi-
gated, and then perhaps brought before a program or project manager for prioritization
before the issue can be resolved. Once it’s been resolved, the fix likely has to wait for the
next build schedule, at which point the entire build must be regression tested and unit
tested to make sure all the issues have been resolved. A company like Microsoft batches
all of its updates (unless they are considered critical) and releases them all at one time. An
advantage to an open source project is that it may not suffer from this process-heavy path
to get a vulnerability fixed. This can be an enormous benefit,
but it can sometimes be balanced by less documentation or
less testing in a rush to get the fix out with an updated version.
Open source projects, depending on their size, may be less
concerned with release schedules and just issue a new minor
version when a bug gets resolved. This isn’t always the case, of
course.

One of the key ideas behind open source projects like Linux
(and all of the packages that go into a regular Linux distri-
bution) is that you are less constrained by human resource
issues. Anyone can pick up the source code and also pick up
a bug and go fix it. This helps with speed to resolution, but it may not guarantee a high-
quality fix. It also doesn’t guarantee you will actually get contributors to your project.

One of biggest advantages to open source projects is the ability for anyone to start
a project and have anyone else who is interested work on it. It doesn’t require business
plans and meetings to determine funding levels and returns on investment or marketing

NOTE

Malicious code modifications
have happened with open source
projects in the past. One example
was the ProFTP server that was
hijacked in 2010. The source code
available for download had been
replaced with an altered copy that
included a back door. Ironically,
the person got in through an
unpatched vulnerability in the FTP
server software that was serving
up the source code.

NOTE

Nessus is a vulnerability scanner
that began life as an open source
project. However, the primary
developers discovered they
weren’t getting a lot of help,
so they closed the source and
started a business selling Nessus.

CHAPTER 1 | Security Threats to Linux 7

1
Security Threats

to Linux

strategies. It just takes someone willing to get started. There are a lot of ways to post
source code so someone else can take a look at it and make alterations. Most open source
software is licensed in such a way that any changes are required to also remain open.
This is another contribution of the GNU Project and its founder Richard Stallman
in particular.

Linux Distributions

There are a large number of Linux distributions, and their popularity waxes and wanes
over time. Slackware, one of the early Linux distributions, retained tremendous popularity
for a number of years. Now, however, it doesn’t even register in the top 25 Linux distri-
butions according to DistroWatch. At the time of this writing, it sits at number 33.
Other distributions have fallen over time. RedHat was popular for a long time. Its level of
support made it a top choice for a lot of users looking for Linux. Now, however, there is no
so-called RedHat distribution. It has fragmented into RedHat Enterprise Linux, a piece of
commercial software that you have to buy from RedHat, and Fedora, which is the devel-
opment distribution for RedHat. Fedora is more cutting-edge and is where RedHat tries
out new concepts to get them stable before rolling them into RedHat Enterprise Linux.

Currently at the top of the popularity charts are Mint and Ubuntu, both derivatives of
Debian. Debian has been around for a long time. It was created about 20 years ago by
Ian Murdock, who wanted to pay homage to his girlfriend at the time, Debra. Debian is a
merging of the name Ian with the name Debra. Debian has long been known in the Linux
community as a very stable distribution of Linux. Often, it has been well behind what are
considered current versions of packages because the maintainers were more interested
in an operating system that was solid and didn’t crash than they were with keeping up

with the bleeding edge.
Most distributions have pre-compiled packages. The distribution

determines all the dependencies, meaning you might end up with a lot
of extra packages that you don’t really want because some package has
dependencies built in from another package. One way to avoid this is to
build your own version of Linux. Some distributions, such as Linux From

Stallman developed the GNU General Public License (GPL). Stallman doesn’t use the term
copyright when talking about rights and privileges that are due software authors. Instead, he uses
the term copyleft. Under copyleft and the GPL, any software that is based on GPLed software is
required to retain the same rights as the original software. In other words, if I create a software
project that I license using the GPL and you take my software, make some modifications to it,
and want to release it yourself, you would also have to release it under the GPL.

NOTE

Gentoo is named after
a particular species of
small, fast penguin.

8 PART 1 | Is Linux Really Secure?

Scratch and Gentoo Linux, are source-based distributions. The idea
behind these sorts of distributions is that you decide how much or
how little you want to put into it. This may have the upside of making
it much faster and more responsive. However, the downside to these
distributions is that all packages must be compiled from source, and
compilation and installation can be a very time-consuming process.
Getting one of these distributions up and running may take several
hours or even the better part of a day, depending on the speed of your
machine and your Internet connection. When you are finished, you
will have exactly what you want, but every time you want to update, you will need to
go through the compilation process again.

The C-I-A Triad

When it comes to security, there are three fundamental concepts. You may sometimes
hear these referred to as C-I-A, the C-I-A triad, the A-I-C triad (to distinguish it from the
U.S. intelligence agency), or maybe just the triad. The three concepts are as follows:

•	 Confidentiality—Keeping secrets is the essence of confidentiality. If someone
says something to you in a crowded room, you won’t be assured of much in the
way of confidentiality because it would be very easy for someone to overhear
what the two of you are saying. If someone were to tap your phone and listen
to your conversations, your confidentiality would be violated. This is certainly
true when it comes to computer communications. If someone could listen in on
network communications by port spanning on a switch, performing a spoofing
attack, tapping the physical network cable, or some other method, your confi-
dentiality would be violated. One common way to protect against this is to use
encryption. This is not a flawless answer, of course, because not all encryption
is created equal. Also, there are issues with keeping the encryption keys secret
and protected. In general, however, if you are worried about confidentiality,
you will want to find a way to ensure someone can’t listen in on or intercept
your conversations.

•	 Integrity—Ensuring that the data that is sent is the data that is received is what
integrity is all about. It’s also about protecting against corruption. The MD5
hash mentioned earlier that often accompanies software distributions is used to
maintain the integrity of the data that is being transmitted. Note that integrity
pertains to more than software downloads or messages that are emailed. It also
relates to data at rest on disks. Any magnetic media like a hard drive or tape drive
can be altered unexpectedly over a long period of time or from large electromag-
netic pulses. Additionally, hardware sometimes fails, which might mean that data
that is either written or read gets corrupted. Fortunately, you can use cyclical

! WARNING

Source-based distributions
are not for the faint of
heart, and are probably
not best attempted by
novice users.

CHAPTER 1 | Security Threats to Linux 9

1
Security Threats

to Linux

